primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
↳ QTRS
↳ DependencyPairsProof
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
FILTER2(s1(s1(X)), cons2(Y, Z)) -> SIEVE1(Y)
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(X, sieve1(Y))
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(s1(s1(X)), Z)
PRIMES -> SIEVE1(from1(s1(s1(0))))
SIEVE1(cons2(X, Y)) -> SIEVE1(Y)
PRIMES -> FROM1(s1(s1(0)))
FILTER2(s1(s1(X)), cons2(Y, Z)) -> IF3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
SIEVE1(cons2(X, Y)) -> FILTER2(X, sieve1(Y))
FROM1(X) -> FROM1(s1(X))
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
FILTER2(s1(s1(X)), cons2(Y, Z)) -> SIEVE1(Y)
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(X, sieve1(Y))
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(s1(s1(X)), Z)
PRIMES -> SIEVE1(from1(s1(s1(0))))
SIEVE1(cons2(X, Y)) -> SIEVE1(Y)
PRIMES -> FROM1(s1(s1(0)))
FILTER2(s1(s1(X)), cons2(Y, Z)) -> IF3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
SIEVE1(cons2(X, Y)) -> FILTER2(X, sieve1(Y))
FROM1(X) -> FROM1(s1(X))
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
FILTER2(s1(s1(X)), cons2(Y, Z)) -> SIEVE1(Y)
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(X, sieve1(Y))
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(s1(s1(X)), Z)
SIEVE1(cons2(X, Y)) -> SIEVE1(Y)
SIEVE1(cons2(X, Y)) -> FILTER2(X, sieve1(Y))
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FILTER2(s1(s1(X)), cons2(Y, Z)) -> SIEVE1(Y)
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(X, sieve1(Y))
FILTER2(s1(s1(X)), cons2(Y, Z)) -> FILTER2(s1(s1(X)), Z)
Used ordering: Polynomial Order [17,21] with Interpretation:
SIEVE1(cons2(X, Y)) -> SIEVE1(Y)
SIEVE1(cons2(X, Y)) -> FILTER2(X, sieve1(Y))
POL( FILTER2(x1, x2) ) = max{0, x2 - 2}
POL( cons2(x1, x2) ) = x1 + x2 + 3
POL( SIEVE1(x1) ) = max{0, x1 - 3}
POL( sieve1(x1) ) = x1
POL( filter2(x1, x2) ) = 0
POL( if3(x1, ..., x3) ) = 0
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
SIEVE1(cons2(X, Y)) -> SIEVE1(Y)
SIEVE1(cons2(X, Y)) -> FILTER2(X, sieve1(Y))
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
SIEVE1(cons2(X, Y)) -> SIEVE1(Y)
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SIEVE1(cons2(X, Y)) -> SIEVE1(Y)
POL( SIEVE1(x1) ) = max{0, x1 - 2}
POL( cons2(x1, x2) ) = x2 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
FROM1(X) -> FROM1(s1(X))
primes -> sieve1(from1(s1(s1(0))))
from1(X) -> cons2(X, from1(s1(X)))
head1(cons2(X, Y)) -> X
tail1(cons2(X, Y)) -> Y
if3(true, X, Y) -> X
if3(false, X, Y) -> Y
filter2(s1(s1(X)), cons2(Y, Z)) -> if3(divides2(s1(s1(X)), Y), filter2(s1(s1(X)), Z), cons2(Y, filter2(X, sieve1(Y))))
sieve1(cons2(X, Y)) -> cons2(X, filter2(X, sieve1(Y)))